Contents

Preface xv
Acknowledgements xvii

Part I Introduction 1

1.1 Introduction 2
1.2 Science and Engineering 2
 1.2.1 Phylogeny 2
 1.2.2 Motivation 4
 1.2.3 Methods 4
 Sushi Science and Hamburger Science 7
 1.2.4 Synthesis 9
1.3 Scientific Method 11
 Scientific Facts in Biology 11
 Examples: Development of the Scientific Method, Statistical Inference, Stem Cell Donations 13
1.4 Mathematical Modeling 16
 1.4.1 The Value of Models 16
 An Engineering Approach to Translational Medicine 17
 1.4.2 Types of Models 18
 1.4.3 Steps in the Modeling Process 19
 1.4.4 Models and Empirical Observations 23
 Examples: Mathematical Model of an Infectious Disease, Localized Estrogen Delivery Affects Neural Plasticity, A Grass-Deer Ecosystem 24
1.5 Biological Engineering 27
1.6 Expectations for Biological Engineers 30
 Examples: Environment Conditions and Human Disease, Sickle Cell Anemia 31
1.7 About Predictions 33
 Example: Predictions About Water Temperature Control Downstream from Dams Across Spawning Rivers 35
1.8 About This Book 37
Questions, Chapter 1 39

Part II Principles from the Sciences 42

2. PRINCIPLES OF PHYSICS 43

2.1 Effort and Flow Variables 45
 2.1.1 Resistance 46
 2.1.2 Capacity 48
 2.1.3 Inertia 48
Protein Separation by Gel Electrophoresis

2.11.2 Electrical Current
2.11.3 Electric Power
Example: Electroporation Allows Genetic Material to Penetrate the Cell

2.12 Temperature Effects
Questions, Chapter 2

3. PRINCIPLES OF CHEMISTRY

3.1 Periodic Nature of Elements
Mole

3.2 Chemical Bonding
3.2.1 Ionic Bonds
3.2.2 Covalent Bonds
3.2.3 Electronegativity
3.2.4 Water As a Polar Molecule
3.2.5 Hydrogen Bonds
3.2.6 Van der Waals Forces
Geckos’ Feet
3.2.7 Metallic Bonding
Examples: Wastewater Bioreactor Troubleshooting, Natural Halocarbons as Bioactive Compounds, Detection of Skin Cancer by Classification of Raman Spectra, Nitric Oxide Messenger

3.3 Chemical Equilibrium
Concentration Measures

3.4 Acids and Bases
3.4.1 Strong and Weak Acids and Bases
3.4.2 Salts
3.4.3 pH

3.5 Reaction Rates
3.5.1 Collision Theory
3.5.2 Intermediate Reactions
3.5.3 First Order Reactions
3.5.4 Enzyme-Substrate Reactions
Example: Faster ELISA

3.6 Carbon Chemistry
3.6.1 Many Possible Configurations
What’s So Special About Carbon?
3.6.2 Functional Groups
3.6.3 Amino Acids
3.6.4 Macromolecule Types
 Microbial Stoichiometry 171
3.6.5 Polymers 173
3.6.6 Melting and Boiling Points 173
3.6.7 Organic Reactions 173
 Primitive Forms of Life 174
 Example: Macromolecule Sieves 176
3.7 Physical Chemistry in Water 178
 3.7.1 Solutions 178
 3.7.2 Gels 183
 Cellular Resting Potential 187
 3.7.3 Suspensions 189
 3.7.4 Isoelectric Point 190
 Example: Clarifying Wine 190
3.8 Protein Folding 192
 Heat Shock Proteins 196
 Example: Biomarkers As Indicators of Environmental Stress,
 Biomarkers as Indicators of Disease 197
3.9 Shape Effects and Enzymes 199
3.10 Energy-Rich Compounds 205
 The Physical Action of ATP 206
 Respiration of Glucose 208
3.11 Temperature and Pressure Effects 212
 Cricket Thermometer 213
3.12 Free Energy 214
 Biocompatibility of Material Surfaces 215
Questions, Chapter 3 218

3 PRINCIPLES OF MATHEMATICS AND ENGINEERING SCIENCES 225

4.1 Equality 227
 Dimensional Analysis 228
 Example: Flow in the Pulmonary Vein 231
4.2 Randomness and Probability 234
 4.2.1 Probability Distributions 234
 What is Beauty? 237
 4.2.2 Self-Similar Data 239
 4.2.3 Pseudo-Random Data 239
 Chaos 240
 4.2.4 Statistics 242
 Linear Least Squares Method 248
 Examples: The Meaning of the Mean, Protecting Against Hyperthermia, Digestibility of Corn Silage in Sheep and Steers,
4.3 Calculus

4.3.1 Derivatives and Differential Equations

4.3.2 First Order Equations

4.3.3 Exponential Responses

4.3.4 Second Order Equations

4.3.5 Periodicity

4.3.6 Nonlinear and Nonconstant Equations

4.3.7 Integration

Examples: *Human Population of the World*, *Classroom Ventilation*, *Respiratory Work Rate*

4.4 Control Systems

4.4.1 Sensors

How Receptors Work

Example: *Making Bitter Food Taste Better*

4.4.2 Actuators

Muscle Types

4.4.3 Communications

Autonomic Nervous System

Action Potentials

4.4.4 Closed-Loop Feedback Systems

4.4.5 Open-Loop Systems

Artificial Neural Networks (ANN)

4.4.6 Closed-Loop Feedforward Systems

4.4.7 Adaptive Control Systems

4.4.8 Fuzzy Control Systems

Example: *The Potted Rose*

4.5 Optimization

4.6 Information

Examples: *Information Content of Micrococcus DNA*, *Entropy Value of Micrococcus DNA*

4.7 Analog and Digital Signal Processing

Questions, Chapter 4

5 PRINCIPLES OF BIOLOGY

5.1 Form and Function

5.2 Modularity and Incremental Change

The Evolution of Hemoglobin

Example: *Cancer Cell Drug Resistance*

5.3 Genetic Basis

5.3.1 DNA as the Blueprint

5.3.2 RNA as the Fabricator

5.3.3 Gene Types

5.3.4 Genetic Expression
5.3.5 RNA Interference

The Chicken or the Egg?

5.3.6 Genetic Variation

5.3.7 Replication

5.3.8 Mutations

Ames Test for Mutagenicity

5.3.9 RNA Correcting DNA

5.3.10 Mitochondrial and Chloroplast DNA

DNA Inheritance

5.3.11 Plasmid DNA

Examples: Searching For the Causes of Autism, High-Energy Radiation, Crossbreeding Tigers, Genetic Causes of Alcoholism, Biochips for Disease Detection

5.4 Competition and Selection

Cheating Genes

Darwin’s Legacy

Selfish Genes

Memes

Example: Natural Selection from Genetic Variation

5.5 Biological Hierarchies

5.5.1 The Cell

Epip-, Meso-, Endo-, and All Those Kinds of Cells

5.5.2 What is Life?

5.5.3 Synthetic Biology

5.5.4 Ecology on Micro- and Macro- Scales

Human Ecology System

5.5.5 Food Pyramid

5.6 Is Biology Complex or Simple?

Questions, Chapter 5

Part III Responses of Living Systems

6. BIOLOGICAL RESPONSES IN CONTEXT (BRIC)

6.1 BU Die Without Water

6.1.1 Water Has Unique Properties

6.1.2 Water Surrounding BU

6.1.3 Water Balance

6.1.4 BU Barriers to Water Movement

Example: Monitoring Almond Tree Trunk Diameter

6.2 BU Die Without the Right Amount of Oxygen

6.2.1 Anaerobes and Facultative Anaerobes
6.2.2 Oxidative Metabolism 406
6.2.3 Oxygen Delivery 407
6.2.4 Too Much Oxygen 408
 Example: *Modeling of Composting* 408
6.3 BU Die Without Food and Nutrients 411
 6.3.1 Essential Elements 411
 How Evolution Shaped Nutrient Needs 413
 6.3.2 Food and Nutrients for Energy and Essential Biochemicals 415
 6.3.3 Nutrient Delivery 416
 Example: *Inside Food Development Labs* 417
6.4 BU Become Ill in the Presence of Wastes 419
 Human Diseases Have Had Profound Effects 420
6.5 BU Need Heat Sources and Sinks 424
 6.5.1 Heat Sources 424
 6.5.2 Removing Excess Heat 425
 Cooling Chickens 426
 6.5.3 Moving to a Better Neighborhood 427
 Liolaemus Lizards 427
 6.5.4 The Best Thermal Conditions 428
 Example: *Storing Platelets* 429
6.6 BU Adapt to Their Environments 431
 Camels and Cacti 431
 6.6.1 Cells and Microbes 433
 6.6.2 Hypertension 434
 6.6.3 Color Changes 434
 6.6.4 Adaptations to Light 435
 6.6.5 Other Adaptations 435
 Fetal Influences Last a Lifetime 437
 Examples: *Ecology of Piney Run Lake, Microbes in Salt Solution, Varroa Mites on Honeybees, Allergy Epidemic* 440
6.7 BU Modify Their Environments 443
 The Prime Directive 444
6.8 Extra Energy Will Be Spent on Adaptations 447
6.9 BU, If Possible, Will Move to Friendlier Environments 450
 Preservation and Extinction 451
 Example: *Wild Animals on Display* 453
6.10 BU Will Evolve Under Environmental Pressures 455
 Evolution at Work for an Engineer 458
 Example: *Selection of Pink Salmon* 459
6.11 Crowding of BU Produces Stress 461
 6.11.1 Antisocial Behavior 461
 6.11.2 Crowding in Humans 462
 6.11.3 Personal Space 463
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.11.4</td>
<td>Sensory Overload</td>
<td>466</td>
</tr>
<tr>
<td>6.11.5</td>
<td>Animal Spaces</td>
<td>467</td>
</tr>
<tr>
<td>6.11.6</td>
<td>Crowding and Disease</td>
<td>467</td>
</tr>
<tr>
<td>6.11.7</td>
<td>Densities in the Wild</td>
<td>468</td>
</tr>
<tr>
<td>6.12</td>
<td>BU Are Affected by Chemical Stresses</td>
<td>470</td>
</tr>
<tr>
<td>6.12.1</td>
<td>Toxicity</td>
<td>470</td>
</tr>
<tr>
<td>6.12.2</td>
<td>Dose-Response</td>
<td>471</td>
</tr>
<tr>
<td>6.12.3</td>
<td>High Doses</td>
<td>475</td>
</tr>
<tr>
<td>6.12.4</td>
<td>Metabolic Wastes</td>
<td>475</td>
</tr>
<tr>
<td>6.12.5</td>
<td>Nanoparticles</td>
<td>476</td>
</tr>
<tr>
<td>6.12.6</td>
<td>Toxins Used as Defenses</td>
<td>476</td>
</tr>
<tr>
<td>6.12.7</td>
<td>Evolution and Cyanide Tolerance</td>
<td>477</td>
</tr>
<tr>
<td>6.12.8</td>
<td>Toxin Tolerances</td>
<td>478</td>
</tr>
<tr>
<td>6.12.9</td>
<td>Poison to Pets</td>
<td>479</td>
</tr>
<tr>
<td>6.13</td>
<td>Mysterious Foal Deaths in Kentucky</td>
<td>481</td>
</tr>
<tr>
<td>6.12.10</td>
<td>Examples: Dose-Response Extrapolation, Antimicrobial Plastics, Why Bt Toxin Isn’t Always Deadly</td>
<td>485</td>
</tr>
<tr>
<td>6.13</td>
<td>BU Respond to Mechanical Stresses</td>
<td>488</td>
</tr>
<tr>
<td>6.13.1</td>
<td>Sedimentation and Clotting</td>
<td>488</td>
</tr>
<tr>
<td>6.13.2</td>
<td>Strengthening and Stiffening</td>
<td>490</td>
</tr>
<tr>
<td>6.13.3</td>
<td>Critical Shear Stress</td>
<td>491</td>
</tr>
<tr>
<td>6.13.4</td>
<td>Stem Cell Substrates</td>
<td>492</td>
</tr>
<tr>
<td>6.13.5</td>
<td>Example: Plants Affected by Human Stroking</td>
<td>493</td>
</tr>
<tr>
<td>6.14</td>
<td>Optimization Is Used to Save Energy and Nutrient Resources</td>
<td>495</td>
</tr>
<tr>
<td>6.14.1</td>
<td>Reproductive Advantage</td>
<td>495</td>
</tr>
<tr>
<td>6.14.2</td>
<td>Locomotion</td>
<td>496</td>
</tr>
<tr>
<td>6.14.3</td>
<td>Breathing</td>
<td>499</td>
</tr>
<tr>
<td>6.14.4</td>
<td>Ecological Optimization</td>
<td>501</td>
</tr>
<tr>
<td>6.14.5</td>
<td>Mode of Action</td>
<td>501</td>
</tr>
<tr>
<td>6.15</td>
<td>BU Alter Themselves to Protect Against Harsh Environments</td>
<td>505</td>
</tr>
<tr>
<td>6.15.1</td>
<td>Torpor, Hibernation, and Estivation</td>
<td>505</td>
</tr>
<tr>
<td>6.15.2</td>
<td>Endospores</td>
<td>508</td>
</tr>
<tr>
<td>6.15.3</td>
<td>Anthrax Through the Mail</td>
<td>509</td>
</tr>
<tr>
<td>6.15.4</td>
<td>Seeds and Spores</td>
<td>511</td>
</tr>
<tr>
<td>6.15.5</td>
<td>Storage Structures</td>
<td>512</td>
</tr>
<tr>
<td>6.15.6</td>
<td>Response to Hemorrhage</td>
<td>512</td>
</tr>
<tr>
<td>6.15.7</td>
<td>Psychological Trauma</td>
<td>513</td>
</tr>
<tr>
<td>6.16</td>
<td>BU Cooperate With Other BU</td>
<td>515</td>
</tr>
<tr>
<td>6.16.1</td>
<td>Symbiosis</td>
<td>515</td>
</tr>
<tr>
<td>6.16.2</td>
<td>Chimera</td>
<td>516</td>
</tr>
</tbody>
</table>
6.16.2 Coevolution
* Cooperation Between Hippos and Fish

6.16.3 Plant Reproduction
* Guanacast Loves Equus

6.16.4 Communal Benefit
6.16.5 Inadvertent Benefit

Examples: *Soil Microorganisms Interact, Costly Signaling Theory of Ritual, Infant Formula Probiotics*

6.17 BU Compete With Other BU

6.17.1 Plants and Herbivores
6.17.2 Predators
* Spiders and the Web of Life

6.17.3 Parasites
6.17.4 Pathogens

Examples: *Humans Against Food Microbes, New Corn Pest, Fighting Aflatoxin Naturally, Immunomodulation to Treat Autoimmune Diseases*

6.18 BU Reproduce

6.18.1 Asexual Reproduction
6.18.2 Exchange of Bacterial Genes
6.18.3 Somatal Cell Reproduction
* Cancer in Humans

6.18.4 Telomeres
6.18.5 Sexual Reproduction
* Silphium

6.18.6 External or Internal Fertilization
6.18.7 Hermaphrodites
6.18.8 Plant Reproduction

Example: *Shipping Animals*

6.19 BU Coordinate Activity Through Communication

6.19.1 Courtship
6.19.2 Acoustic Signals
* Human Language According to Chomsky Frequency Contents of Sounds

6.19.3 Chemical Signals
6.19.4 Touch Signals
6.19.5 Visual Signals
* Seeing Inside Us

6.19.6 Others
* Perception of Stimuli

6.19.7 Just Noticeable Difference

Examples: *Training Animals to Come When Called, Siren’s Song, Ground Squirrels Warn Rattlesnakes*

x
6.20 BU Maintain Stability with Exquisite Control 577
 6.20.1 The Senses 577
 6.20.2 Controllers 581
 6.20.3 Redundancy 583
 Immune System as a Model of Ultra-Redundancy 584
 6.20.4 Antagonistic Action 592
 6.20.5 Dead Zone 599
 6.20.6 Time Delays 599
 6.20.7 Working with Biological Control 600
 Examples: *Using Antibodies, Malaria Therapy to Cure Difficult Diseases, Myoelectric Control of Prostheses, Antigens vs Antibodies* 600

6.21 BU Go Through Natural Cycles 604
 6.21.1 Regeneration 604
 6.21.2 Maturation 605
 6.21.3 Senescence 607
 6.21.4 Death 609
 6.21.5 Annual Cycles 610
 Waves of Wildebeests 610
 6.21.6 Monthly Cycles 613
 6.21.7 Diurnal Cycles 615
 Sleep and Cancer 618
 6.21.8 Cycles Shorter Than a Day 618
 6.21.9 Asynchronous Nutrient Cycles 619
 Examples: *Funky Leaf Spot, Modeling the Cycle of Seventeen Year Cicadas* 622

6.22 BU Need Emotional Satisfaction and Intellectual Stimulation 625
 6.22.1 The Nature of Emotions 625
 6.22.2 Personality 630
 Do Apes Have Souls? 631
 6.22.3 Neurotransmitters 633
 6.22.4 Interpersonal Interactions 634
 Children at Play 634
 6.22.5 Brain Development and Learning 636
 Understanding Animals 641
 6.22.6 Psychological Hierarchy 642
 Human Factors Engineering 644
 6.22.7 Social Infrastructure 648
 Mother Bear Man 650
 6.22.8 Mind-Body Interactions 652
 Athletes and Illness 654
 Placebo Effect 655
 Examples: *Harvesting Broiler Chickens, Wild Animal Display, Toys For Captive*
Animals, An Ergonomic Solution,
Human Factors Shortcomings at
Three Mile Island 656

6.23 BU Die 660

Crime Scene Investigation: Using Biology to Solve a
Mystery 662

6.23.1 Reliability Theory and Death Rates 663
Example: Canary on a Chip 667

Questions, Chapter 6 668

Part IV Scaling Factors 685

7.1 Allometric Relationships from Evolutionary Pressure 686
7.2 Dimensional Analysis 689
7.3 Golden Ratio 691
7.4 Fractal Scaling Within an Organism 693
7.4.1 Body Mass 695
7.4.2 Body Surface Area 696
7.4.3 Body Dimensions 697
7.4.4 Metabolic Rate and Related Temperatures 701
7.4.5 Oxygen Consumption 704
7.4.6 Heat Loss 706
7.4.7 Cardiovascular Factors 706
7.4.8 Respiration 712
7.4.9 Walking and Running 717
7.4.10 Relations Involving Time 724
7.4.11 Food and Waste 726
7.4.12 Bird Songs 728

Examples: Frog Jumping Model, Monkeys in
Space, Life Support in a Large
Animal Veterinary Medical Clinic 729

7.5 Self-Similarity for Tissues and Organs 735
7.5.1 Organs 735
7.5.2 Tissues 736
Example: Human Kidney Mass 737

7.6 Self-Similarity in Populations 738
7.6.1 Number of Species 738
7.6.2 Species Range 739
7.6.3 Population Densities 740
7.6.4 Population Doubling Time 744
Example: Bison Population Recovery 744

Questions, Chapter 7 746

Part V Utilizing Living Systems 750
or Basal State

Table A11. Respiration Rates for Fungi
Table A12. Respiration Rates for Bacteria Suspended in the Presence of Glucose
Table A13. Respiration Rates for Algae
Table A14. Respiration Rates for Lichens
Table A15. Respiration Rates of Liverworts and Mosses
Table A16. Respiration Rates for Horsetails and Ferns
Table A17. Respiration Rates for Plant Storage Organs in Storage
Table A18. Respiration Rates for Fruits
Table A19. Lung Ventilation for Resting Vertebrates
Table A20. Apparent Maximum Rates of Photosynthesis under Natural Conditions
Table A21. Apparent Maximum Rates of Photosynthesis for Near-Optimum Conditions
Table A22. Apparent Rates of Photosynthesis for Specified Conditions
Table A23. Estimated Annual Carbon Production
Table A24. Efficiency of Photosynthesis
Table A25. Typical Unstressed Heart Rates
Table A26. Cardiac Output for Vertebrates under Various Conditions
Table A27. Gestation Periods of Mammals
Table A28. Breeding Habits of Aquatic Invertebrates
Table A29. Incubation and Care of Young in Birds
Table A30. Breeding Habits of Reptiles
Table A31. Breeding Habits of Amphibians
Table A32. Breeding Habits of Fish
Table A33. Reproduction of Insects
Table A34. Life Spans of Animals
Table A35. Cell Division Frequency of Bacteria and Viruses
Table A36. Cell Division Frequency of Protozoa
Table A37. Water Balance for Resting Terrestrial Animals
Table A38. Water Balance for Resting Aquatic Animals